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Abstract 
In this paper the performance evaluation of smart networks to identify highly heterogeneous textures remote 
sensing images was investigated. These networks are Feed Forward Neural Networks (FFNN), Quantum 
Neural Network (QNN) and Support Vector Machine (SVM).  This evaluation is performed through an 
optimization training time and number of parameters of smart networks in the constraint to achieve optimal 
identification rate of the textures. The study also concerns the influence of the nature of heterogeneous textures 
on the choice of smart networks parameters to obtain elementary unit of textures. The objective is to study the 
impact of the textural information on the network design and considering that the samples of textures have a 
textural complexity due to the textural correlation and the overlapping rates of species in these textures. 
Textures bases used in this study are taken from different remote sensing images sources: an airborne radar 
image and an ASTER satellite whose resolutions are totally different. We have studied the influence of the 
spatial resolution on the textures identification and network performance relative to each of the two types of 
images. 
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1. Introduction 
Several studies have shown that smart classifiers are 
fairly robust tools for the identification of remote 
sensing image textures [1][2]. However, the 
development of such networks must take in account 
the minimization of computation time and the 
convergence to an optimal solution. All this is 
related to the complexity of the data in terms of their 
dimensions and correlations. 
Neural networks called Feed Forward Neural 
Networks (FFNN), are widely used as the 
classifiers, through their approximation and 
generalization capabilities [3]. 
Quantum neural networks (QNN) are also called 
FFNN fuzzy-based networks [4][5]. The 
development of neuro-fuzzy systems, through the 
merger of neuronal modeling with the concepts of 
fuzzy logic, was realized to treat   the incapacity of 
FFNN networks to properly estimate the belonging 
class of two data from two regions with a high 
correlation due the sharp decision to partition the 
observation space [4]. The QNN networks are the 
FFNN networks able to classify the uncertain data. 
The main difference between these two networks is 
the shape of activation functions related to hidden 
layers, which are nonlinear. 

Separator Large Marge Networks or Support Vector 
Machine (SVM) are powerful tools recognized for 
solving the training problems [6]. With their speed 
and their power, the SVM networks have been 
exploited in various applications area such as image 
classification [7], texture classification based on the 
wavelet coefficients [8]. There are two main 
methods of SVM training of more than two classes 
[9]: the first method is called “one against all” 
(1AA) and the second method is called “one against 
one” (1A1). However, the 1AA method is best 
suited for image classification, but it is slower than 
the 1A1 method. 
For this study we have considered two remote 
sensing images with different acquisition modes. An 
image acquired by the airborne radar called 
synthetic aperture radar (SAR) and another acquired 
by the sensor Terra of ASTER satellite. The image 
areas are in different places of the Tunisian territory 
(semi-arid and forested area). Our interest is the 
influence of textural parameters on the neural 
network implementation, able to identify such 
textures knowing that the units constituting such 
image textures  with their details, are conditioned by 
the spatial resolution (most fine is the resolution,  
more are the details). 

  

WSEAS TRANSACTIONS on SIGNAL PROCESSING Marrakchi Charfi Olfa, Mbainaibeye Jerome

E-ISSN: 2224-3488 179 Volume 12, 2016

mailto:olfa.charfi@gmail.com
mailto:mbai_jerome@yahoo.com


In the first time, we perform an analysis of image 
textures by taking in account the nature of their 
complexity. In the second time, we highlight the 
compromise between the development of an optimal 
architecture for each type of network and textural 
parameters. In the third time, we evaluate the 
performance of the networks in the textures 
identification. 
 
 
2. Databases 
2.1 Texture analysis 
Textures bases used are extracted from remote 
sensing images: an image acquired by a synthetic 
aperture radar (SAR) airborne C-band and 
horizontal polarization and an image acquired by the 
multi-spectral sensor of Terra ASTER satellite : Red 
(R), Green (V) and Near Infrared (NIR). A thematic 
study on the image areas has allowed us to identify 
the different existing textures in these images. Due 
to the higher resolution of the SAR image (4.6 
meters of spatial resolution), this image shows more 
details than the Aster image for which the spatial 
resolution is 15 meters (see figure 1 and table 1). 
 

   
(1)                       (2)                           (3)                       

   
(4)                      (5)                             (6) 

  
(7)                                  (8) 

   
(9)                 (10)                 (11) 
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(14)               (15)         (16) 

   
(17)                       (18)               (19)                

    
(20)                  (21)            (22)       (23)              

 
                                    (24) 

Fig.1 Samples of textures of remote sensing images: 
from (1) to (16) are those of SAR image and from 

(17) to (24) are those of ASTER image.  
 

Table 1 Characteristics of texture samples of the two 
images. 

A: Olivier on covered soil by vegetation, B: Build 
on covered soil by vegetation, C: Naked soil with 
presence of vegetation 
D: Vegetation, E: Oak cork with a recovery =5 % -
10%, F: Oak cork with a R recovery = 50%-75%, 
G: Oak cork with a R recovery R > 75%, H: Pine of 
Alps with a recovery R=100 % 
 

 

Selected textural windows will be used later, for 
training purposes of the different smart networks. 
The textures of the images are irregular and 
containing common textural elements. The high 
existing textural correlation can be observed 
visually from the histogram distributions of texture 
samples from each of the two images (figures 2 and 
3). The dynamic of gray levels is wide in the case of 
textures of SAR image; this allows more 
information of these textures. The existence of 
common textural elements causes the overlapped 
distributions for the most textures. For example, the 
textures C.L5-10, C.L50-75 and C.L + 75 of 
ASTER present the textural element " oak cork " 
common to these textures but have a variable 
overlapping percentage from one  texture to  
another.  For the textures O.V and SN.V of the SAR 
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image, they have the common textural element 
which is the "naked soil ". 
We note therefore that the textures of the ASTER 
image present, for certain textures, a spectral inter-
band correlation R and RIP. Indeed, the spectral 
response of the texture P.A100 in the V band has a 
distribution similar to that given in the NIR band; so 
we can deduce that there is inter-band redundancy 
information.  
In this study, the redundancy information is one of 
the parameters which can influence the design of 
networks as the data are used in their raw state 
(digital pixel value) to perform training.  
 

 
Fig.2 Histograms of the textures for ASTER image  

 
a                                      b  

 
c                                       d 

Fig.3 Histograms of the textures for SAR image: a) 
O.V, b) B.V, c) SN.V, d) V. 

 
2.2. Design of data bases for training and test  
The windows of textures of (figure 1 and table 1) 
extracted from remote sensing images were used as 
texture samples to achieve training and testing of 
FFNN, SVM, and QNN networks. The examples are 
designed from a scan, using a window with size of 
Kb x Kb where Kb belongs to the following list {3, 5, 
7, 9, 11}, realized on these textural windows. For 
the training of the networks, the examples are 
randomly selected from all the examples where the 
number of examples is the same for each of these 
textures. Indeed, after a random mixture of these 
examples, we have considered a number equal to 

2/3 of the total number of examples used for the 
training phase and the 1/3 was used for the test 
phase of the different networks (see figure 4).  

 
Table 2 Number of samples of remote sensing 

image textures depending on the size of the 
scanning window 

 
 
 
 
3. Smart Network Design 
3.1 Optimal network design procedure 
 The first step in the development of a network is to 
initialize a number of network parameters. Some 
parameters are adjusted iteratively according to two 
criteria: obtain the convergence of the Mean Square 
Error (MSE) given by equation 4 after training 
(MSEL) toward a minimum MSE value (EQMLmin) 
and ensure that the MSE determined in the test 
phase (EQMT) is greater than EQML (Fig.4). There 
may be several architectures responding to the 
imposed conditions. Choosing the optimal network 
depends, therefore, on the results of texture 
identification rate of the image after their 
identification by different networks. The texture 
identification rate procedure is defined by equation 
1.   
Depending on the size of the input vector, we have 
obtained several possibilities of the networks whose 
may be used for image texture classification. 
Indeed, successful networks are those have well 
responded to the convergence criteria of MSE. To 
avoid the possibility to have several network 
architectures, we have imposed the rapidity of 
convergence by a minimum convergence time Tc 
during the training phase. So, only are considered 
the networks for which the convergence time is 
inferior or equal to Tc.  
𝐼𝐼𝑑𝑑(𝑇𝑇) = ∑ �𝑝𝑝(𝐼𝐼𝑠𝑠 = 𝑖𝑖 /𝑇𝑇𝑠𝑠 = 𝑇𝑇)/𝑝𝑝(𝑇𝑇𝑠𝑠 = 𝑇𝑇/𝐼𝐼𝑠𝑠 =𝑐𝑐

𝑖𝑖=1
𝑖𝑖)� × 100                                                              (1) 
Where c is the number of classes, Is is the pixel 
label s and p(s = i / Ts = T) is the conditional 
probability that the pixel s is classified in class i 
knowing that it is the texture T.  

     Band 1        Band 2        Band 3 

 
C.L5-10 
 
 
 
 
C.L50-75 
 
 
 
C.L+75 
 
 
 
C.L+75 
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Fig.4 Flowchart of the training and test phases.  

 
 
3.2. Neural network classification (FFNN) 
The architecture of the neural network FFNN that 
we have used is the multilayer perceptron (figure 5) 
[10]. The adaptation of the synaptic weights of the 
network, Wijk  is done according to the MSE back-
propagation algorithm defined by equation 2 using a 
descending gradient method defined in equation 3. 
The activation functions used are the same for all 
network layers. A suitable function is the sigmoid 
function f which values belong to the interval [-1,1] 
(see equation 5). The first stage of the network 
development is to initialize a certain number of 
parameters: the number of input nodes N which is 
conditioned by the size of the scanning window Kb 
where Kb x Kb = N; the number of neurons of the 
output layer is equal to the number of classes Ns; the 
number of neurons of the first hidden layer n; the 
number of the second hidden layer m and the 
training step µ. The synaptic weights Wijk and the 
parameter µ are randomly initialized and are 
adjusted iteratively and sequentially (after passage 
of an example or sample) according to the criteria 
imposed on MSEL and MSET (figure 4). In the case 
where the MSEL does not converge to MSEmin, after 
a given number of iterations iter,  the number of 
neurons per layer and the value of the training step 
will be adjusted. 

 
Fig.5 Architecture of a FFNN network 

 
The adaptation algorithm of the synaptic weights by 
the method of back-propagation of descending 
gradient is defined by  equations 2 and 3: 
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝 + 1) = 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝) + ∆𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝)                    (2)                                                                                                                                        
Where Wijk(p+1) is the synaptic connection weight 
between neuron i of the layer k and the neuron j of 
the layer (k-1) at iteration (p + 1) and ΔWijk(p) is the 
variation of the synaptic weight between iteration p 
and (p + 1) defined by equation 3 
∆𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝) = − 1

2
𝜇𝜇 𝜕𝜕𝜕𝜕(𝑝𝑝)
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝)                                     (3)                                    

The MSE at iteration p, between the desired output 
ds (table 2) and the output of the network 𝑦𝑦𝑠𝑠

𝑝𝑝   is 
defined by the equation 4: 
𝜕𝜕(𝑝𝑝) = ∑ �𝑑𝑑𝑠𝑠 − 𝑦𝑦𝑠𝑠

𝑝𝑝�2𝑁𝑁𝑠𝑠
𝑠𝑠=1                                        (4)                                                                                                                                                                             

𝑦𝑦𝑠𝑠
𝑝𝑝 = 𝑓𝑓�𝑌𝑌𝑠𝑠

𝑝𝑝�                                                           (5)                                                                                                                                                                                                                  
Where  f and 𝑌𝑌𝑠𝑠

𝑝𝑝  are defined respectively by the 
equations 6 and 7 

 𝑓𝑓(𝑌𝑌) = 1−𝑒𝑒−𝛽𝛽0𝑌𝑌

1+𝑒𝑒−𝛽𝛽0𝑌𝑌
                                                     (6)                                                         

Where β0 is the slop of the sigmoid function 
𝑌𝑌𝑖𝑖
𝑝𝑝 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 (𝑝𝑝)𝑥𝑥𝑖𝑖

𝑝𝑝𝑁𝑁1
𝑖𝑖=1                                            (7) 

                                         
                                                                                                                                 
3.3. Classification by quantum neural networks 
(QNN) 
The implementation of QNN network requires two 
steps [15]. Initially, a simple FFNN network is 
designed, consisting of a single input layer, 
containing N nodes,  which is equal to the size of 
the scanning window Kb, a hidden layer containing 
Nh neurons and an output layer containing Ns which 
is  equal to the number of classes (figure 6). By 
varying the value of the training step µ of 
the  synaptic weights  (Wij, Vij) according to 
descending gradient algorithm (equation 2) and the 
number of neurons Nh, we have obtained the 
convergence of  the FFNN network to a minimum 
EQML (equation 4) but this convergence is not 
necessarily optimal. In the second step, we have 
considered that only the activation functions of 
neurons in the hidden layer of the same network 
FFNN are in multilevel configuration (figure 7). The 
number Ns of activation functions level is considered 
as the same for all the neurons in this layer. The 
position of the jump levels Ɵr of the multi-level 
activation functions are also adjusted according to 
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the descending gradient algorithm but by the 
minimization of the objective function G (equation 
10). In this case, Ɵr are adjusted with a training step  
𝛼𝛼𝜃𝜃 . Once the parameter 𝛼𝛼𝜃𝜃   is optimized, the 
number of thresholds Ns is adjusted to allow the 
convergence of MSEL  to the lowest possible value.    
 

 
Fig.6 Architecture of a QNN network. 

𝑦𝑦�𝑖𝑖 ,𝑝𝑝 = 𝑔𝑔0 �∑ 𝑊𝑊𝑖𝑖𝑖𝑖 ℎ�𝑖𝑖 ,𝑝𝑝
𝑁𝑁ℎ
𝑖𝑖=0 �                                       (8) 

        
 With  
 𝑔𝑔0(𝑥𝑥) = 1

1+𝑒𝑒 (−𝛽𝛽0𝑥𝑥) 
 ℎ�𝑖𝑖 ,𝑝𝑝 = 𝑔𝑔�ℎ�𝑖𝑖 ,𝑝𝑝� 
 ℎ�𝑖𝑖 ,𝑝𝑝 = ∑ 𝑉𝑉𝑖𝑖𝑗𝑗𝑁𝑁

𝑗𝑗=0 𝑥𝑥𝑗𝑗 ,𝑝𝑝  
 𝑔𝑔(𝑥𝑥) = 1

𝑛𝑛𝑠𝑠
∑ 𝑔𝑔0
𝑛𝑛𝑠𝑠
𝑖𝑖=1 �𝛽𝛽ℎ(𝑥𝑥 − 𝜃𝜃𝑟𝑟)�    

The minimization of the MSE defined by equation 9 
 𝜕𝜕(𝑝𝑝) = 𝑀𝑀𝑀𝑀𝜕𝜕 = 1

2
∑ �𝑦𝑦𝑖𝑖 ,𝑝𝑝 − 𝑦𝑦�𝑖𝑖 ,𝑝𝑝�

2𝑁𝑁𝑠𝑠
𝑖𝑖=1                    (9)                     

The minimization of the objective function G 
defined by equation 10 
𝐺𝐺 = 1

2
∑ ∑ ∑ �< ℎ�𝑖𝑖 ,𝐶𝐶𝑚𝑚 > −ℎ�𝑖𝑖 ,𝑝𝑝�

2𝑁𝑁𝑠𝑠
𝑝𝑝∈𝐶𝐶𝑚𝑚

𝑁𝑁𝑠𝑠
𝑚𝑚=1

𝑁𝑁ℎ
𝑖𝑖=1       (10)                                                                                                                

With < ℎ�𝑖𝑖 ,𝐶𝐶𝑚𝑚 > is the average value of these outputs 
associated with samples of a given class Cm and 𝛽𝛽ℎ  
the slope of the multi-levels sigmoid functions. 

 

 

 

 

 

Quantum intervals 
Fig.7  Example of four-level activation function (ns 
= 4) applied to the j-th neuron of the hidden layer 

from the k-th observation vector. 
 
 

3.4. Classification by wide margin separators 
networks (SVM) 
Wide margin separators are mainly used to treat the 
non-linear discrimination problem [12][6] such as 
SAR and ASTER image textures. We have used the 
predefined functions of the software library 
Matlab7.10 (R2009a) [13] to realize the training and 
the test phases of the networks (see figure 4). The 
predefined function used for the training accepts six 
parameters in the input and deliver four output 
parameters (see figure 9 a). The predefined function 
for the test accepts six parameters whose have been 
adjusted for the determination of the hyper-plane in 
the training phase, the support vectors 𝑦𝑦�𝑖𝑖𝑝𝑝  and the 
test examples, and delivers only one output, namely 
the real output for each test sample (see figure 9 b).  
The SVM networks [11] architecture has four SVM 
(Architecture "1A1"), relative to the number of 
textures per image (figure 9). After the training 
phase, each SVMi network recognizes the samples 
associated to the Ti texture of all samples used in 
the training of QNN and FFNN networks. However, 
for one SVMi network among the four networks, 
corresponds one output yi which converges to +1 
and the other SVMj networks with j ≠ i converge 
towards  -1 (table 3). Note that the four networks are 
used in the training phase at the same time. To 
obtain the converge of  these networks to the desired 
outputs for all samples in the training database, 
some parameters of global  SVM network such as 
the standard deviation (σ ), the variable spring (ξ), 
the width of the margin (C) and the number of 
support vectors (NSV) should be adjusted.    

 

Fig.8 Architecture of a SVM network. 

 
                      a                                                        b    

Fig.9 Parameters of predefined functions in the 
software library "SVM and Kernel Methods Matlab 
Toolbox": a) training phase with  svmval.m, b) test 

phase with  function  svmtrain.m    
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The different inputs are: 

1: Designed samples for training of the networks  
2: Desired outputs for each training sample 
3: The constant C which allows controlling the 
compromise between the classification errors 
number and the marge width.  
4: The variable which describes the classification 
error of the examples 
5: The kernel used to compute the scalar product 
6: The adjustment kernel parameter  
7: The real outputs for each training sample  
8: The support vectors 
9: Weights W 
10: Slant W0 
11: Designed samples for test 
12: Real outputs for each test sample. 
 
The parameter from 3 to 6 is to be adjusted.  
 
 
3.5. Images classification procedure   
Remote sensing images are sampled with a scan 
window for which the size is Kb x Kb defining the 
number of input nodes N of the network designed 
after training phase. During the classification, each 
texture sample is presented to the network input (see 
table 2). The network output index (among Ns 
networks), providing the minimum value of the 
MSE between the real output of the network and the 
output of the different codes previously attributed to 
the textures (table 3), is considered as the label (or 
class) associated with the current sample. The 
resulting image is an image of labels; it represents 
the image classified by the network. 
  

Tab.3 Codes of desired outputs of the 
network for each type of texture 

a) FFNN and SVM, b) QNN.        
       (a)                                              (b)                                                        

 
 
 
4. Results and interpretation 
4.1. Classification results of FFNN networks  
To the textures of both ASTER and SAR images is 
assigned several neural architectures possible that 
have satisfied both two criteria: rapidity of the 
convergence of the adaptation algorithm of the 

synaptic weights to the EQMmin, and maximal 
texture identification. For these neural configuration 
cases, the simulations with the training examples 
and testing examples (see figure 4), MSEL and MSET 
are quite low. Therefore, the image texture 
identification rates are all greater than 75% [14]. For 
each size of scanning window, a neural network was 
designed to give the best results in texture 
classification (see tables 4 and 5). For these 
networks cases, the best identification rate is more 
than 90% for the textures in the SAR image and was 
obtained using a FFNN network composed of a 
single layer of 100 neurons (see tables 5 and 6). 
Also, the best identification rate is more than 98% 
for texture ASTER image, obtained using a FFNN 
network composed of two layers: the first layer 
contains 120 neurons and the second layer contains 
45 neurons (see tables  4 and 6).    
  

Table 4 Optimal parameters of FFNN for ASTER 
image. 

 
 

Table 5 Optimal parameters of FFNN for SAR 
image. 

 
 

Table 6 Average rate of textures identification of 
Aster and SAR images (in %) obtained by FFNN 

network 

 
 

From the results, the basic unit textures, or texton, 
of ASTER image varies with the nature of the 
texture (see table 7 and figure 10). Indeed, for 
textures C.L5-10 and C.L50-75, a window of size 
Kb = 3 allows a best representation of these textures. 
In this case, the network is optimized in terms of 
neurons number (20 neurons) but not optimized in 
terms of training time (T = 35 min). For texture 
C.L50-75, the window size Kb = 9 gives good 
identification rate, but the network requires a higher 
number of neurons (165 neurons). For texture C.L + 
75, both the window sizes Kb = 7 and Kb = 9,  give 
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the identification rates more than 99%  for FFNN 
network with 15 neurons and a training time varying 
between 14 min and 30 min. Finally, the texture 
P.A100, is better represented by the window size Kb 
= 5 or more; in this case, the number of neurons can 
vary from 165 to 260 for a training time varying 
between 14 and 30 min. The analysis results 
confirmed that the size of the window increases with 
the overlapping rate (R) of the plant species. We 
conclude that the FFNN network requires more 
neurons. 

 
Table 7 Performance of FFNN network for 

ASTER image 

 

 

Fig.10 Textures identification rate of ASTER image 
in function of the different scanning window sizes 

Kb = 3, 5, 7, 9, 11 for FFNN networks. 
 

The criteria used in the design of FFNN networks 
for the identification of textures of the image 
ASTER were also applied to networks designed to 
identify the textures of the SAR image. The 
classification results show that the textures in the 
SAR image require neuronal architecture composed 
of a smaller number of neurons than that of the 
image ASTER (table 5). The texture identification 
rates of SAR image are greater than 90 % but are 
inferior to those of ASTER; this is due to the texture 
mixture which exists in SAR (heterogeneous 
texture) and the higher resolution (more details) of 
the image SAR than the image ASTER (see figure 
11). The basic unit of the textures of the SAR image 
is variable (see table 8). Thus, for the textures O.V 
and B.V, a window of size Kb = 7 can describe these 
textures. The texture SN.V can be represented by a 
window of size Kb = 5, with a FFNN network for 
which the number of neurons is lower 20 neurons 
than other networks. Finally, the texture V requires 

a window of size Kb = 11, much wide than that of 
other textures.  
From these results, textures are represented by the 
variable size windows depending of the textural 
nature:  more the form is randomly distributed; more 
is the number of input nodes required by the 
network and consequently a larger window size. 

    
Table 8 Performance of FFNN network for 

SAR image 

 

 

Fig.11 Textures identification rate of SAR image in 
function of the different scanning window sizes  Kb 

= 3, 5, 7, 9, 11 for FFNN networks. 
 

In conclusion, the results of the texture 
identification by FFNN networks show that the 
identification rate values depend on the mode of 
image acquisition. Also, the spatial resolution, the 
characteristics and the texture overlapping have a 
direct impact on FFNN network architecture. 
Simulations of FFNN networks were performed by 
Matlab 7.4 using an Intel CPU Q8200 2.33GHz 
processor Core2Quad. 
 
 
4.2. Classification results of QNN networks  
The design of QNN network is based mainly on the 
optimization criterion of MSEL. For this purpose, 
five QNN networks per image, according to Kb ∈ 
{3, 5, 7, 9, 11}, were selected (see tables 9 and 10). 
The decision at this step is the texture identification 
rate results of the two images (see figures 12 and 
13). 
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Table 9 Optimal parameters of QNN network for 
ASTER image, EQMmin = 0.01, 𝜶𝜶𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 
Table 10 Optimal parameters of QNN network for 

SAR image, MSEmin = 0.01, 𝜶𝜶𝜽𝜽 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

 
 

The classification results show that the best 
identification rate is more than 95% for the textures 
in the SAR image; these results were obtained by 
using a QNN network with 20 neurons in the hidden 
layer (tables 9 and 10). Also, the best identification 
rate is more than 90% for ASTER textures image; 
this result was obtained using a QNN network with 
18 neurons in the hidden layer (see tables 11 and 
12).  The identification texture depends on the size 
Kb of the scanning window and the nature of the 
texture (see tables 12 and 13). The textures C.L5-10 
and C.L50-75 of ASTER image are better identified 
for large values of Kb. In this case the identification 
rate reaches the values more than 70% for Kb =11. 
The texture C.L + 75 is very well identified for Kb = 
11 because the identification rate is nearly 100%. 
The texture P.A100 is 100% identified regardless of 
the size of the scanning window. 
The textures of the SAR image are all identified to 
more than 70%  for the sizes of scanning windows 
greater to  Kb = 5. Thus, for the texture O.V, the best 
identification rates are obtained for Kb = 5 or Kb =11 
while for the texture B.V, the maximum rate is 
obtained when Kb = 11. Two cases are possible for 
the texture SN.V because we have obtained more 
than 99% of good classification when Kb = 5 or Kb = 
11. The identification rate of texture V is more than 
95% for Kb = 9 or Kb = 11. For this image, we have 
obtained the identification rate which is nearly 
100%.  
 

 
 
 
 

Table 11 Average identification rate for textures of 
ASTER and SAR images (in %) using QNN 

network. 

 
All textural forms of ASTER image can be 
represented by a scanning window of size Kb = 11. 
A unique choice of QNN network for all textures of 
ASTER image composed of 18 neurons in the 
hidden layer and 7 neurons in the output layer 
allows the faster  training and allows classifying this 
image with  best results (see table 12). 
 
Table 12 Performance of QNN network for ASTER 

image 

 

 
 

Fig.12 Textures identification rate of ASTER   
image in function of the different scanning window 

sizes Kb = 3, 5, 7, 9, 11 for QNN networks. 
 

All textures of the SAR image are also well 
represented by a scanning window of size Kb =11; 
however the textural element of each texture can be 
identified by smaller sizes. We have observed that 
this may cause a degradation of QNN network 
performance in terms of training time with a 
compromise on the number of neurons in the hidden 
layer (see table 13). 
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Table 13 Performances of QNN network for 
SAR image 

 

 

Fig.13 Textures identification rate of SAR image in 
function of the different scanning window sizes Kb 

= 3, 5, 7, 9, 11 for QNN networks. 
 

All the programming of QNN and SVM networks 
was performed under a processor based platform 
Centrino ™ with  a frequency of 1.7GHz. 
 
 
4.3. Classification results of SVM networks   
Several SVM networks can be used for textures 
classification. Successful networks are the ones 
whose respond to the convergence criteria of the 
MSEL, the speed of convergence during training 
phase (see tables 14 and 15) and for which the 
evaluation of texture classification has reached the 
maximum identification rate. Note that MSEL has 
reached 10-5. 
The textures of the ASTER image have an average 
classification rate of 100% regardless the size Kb x 
Kb of the scanning windows. However for the SAR 
textures image, the average identification rate is not 
high. The best average textures identification rate is 
obtained by the SVM network for Kb = 11 (see table 
16). 
 
 
 
 
 
 

Table 14 Optimal parameters of SVM network for 
SAR image.  Inf: infinity 

 
 

Table 15 Optimal parameters of SVM network for 
ASTER image. C = Inf., σ = 2. 

 
The textures of the SAR image classification rates 
has  slightly the lower values than those of ASTER 
image (see figures 14 and 15) although the number 
of examples of texture used for training phase is  
roughly equal to twice of those of the ASTER image 
(see figure 3). 
  

Table 16 Identification average rate of textures 
images 

ASTER and SAR  (in %) for  SVM  network 

 
 
The Kb size of scan windows is not a mandatory 
parameter for the identification of the textures of the 
ASTER and SAR images. However, more the 
scanning windows size Kb  increases, less the SVM  
networks require support vectors and therefore 
training  is faster (see tables 16 and 17). Note that 
the SVM networks designed for the classification of 
SAR image require a much larger number of support 
vectors than those designed for the classification of 
ASTER image (see tables 14 and 15).   
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Table 17 Performance of SVM network for 
ASTER image  

 
 

 
 

Fig.14  Textures identification rate of ASTER image 
in function of the different scanning window sizes 

Kb = 3, 5, 7, 9, 11 for SVM  networks. 
 

Table 18 Performance of SVM networks for 
SAR image  

   
 

 
 

Fig. 15 Textures identification rate of SAR image in 
function of the different scanning window sizes Kb 

= 3, 5, 7, 9, 11 for SVM networks. 

5. Confrontation of the classification results 
The best results of image classification are those 
obtained by using the SVM networks (see table 18). 
These networks also have the advantage of being the 
faster during the training phase and are also more 
robust than FFNN and QNN networks. However, 
they require a large number of NSV and the 
adjustment of several parameters at once. 
The QNN networks achieve texture identification 
rate of the SAR image slightly higher than those 
obtained with FFNN networks and also have the 
advantage of being faster and use fewer neurons that 
FFNN networks. However, for the ASTER image, 
the results of the identification rate of textures by 
the FFNN networks are better than those obtained 
by the QNN networks. The FFNN networks have 
the advantage of being much faster during the 
training phase but require more neurons (see tables 
4 and  9).  
 
Table 19 Textures identification rate for the remote 

sensing images obtained by the different 
classification methods. (a) Image ASTER, (b) Image 

SAR. 
(a) 

                                                           
(b) 

 
 

For the textures of SAR image, the networks whose 
allow obtaining the best average identification rates 
are themselves the faster for the training. In these 
cases, the size of the scanning window differs from 
one network to another (see table 20). Therefore, we 
cannot define a dimension of the representative 
texton of the texture by evaluating the average 
identification rates results. The results differ for the 
ASTER image textures and especially in the case of 
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the FFNN networks. Indeed, they identify all 
textures with the average rates more than 90% but 
the faster is the one for Kb = 9 (see tables 19a and 
19b). The results of classified images on table 19 are 
represented by figures 16 and 17. 
 

Table 20 Performance of networks and optimal 
texture identification rates for remote sensing 
images obtained by the different classification 

methods.  
(a) ASTER image, (b) SAR image.  

(a) 

(b) 

 
 

 
(a)                            (b) 

 
(c)                            (d) 

 
Fig.16 Better classification results from the ASTER 

image. (a) Original image, 
(b) FFNN, (c) QNN, (d) SVM. 

 

 
(a)                                 (b)   
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(c)                               (d)   

Fig.17  Better classification results of the SAR 
image. (a) Original image (b) FFNN, 

(c) QNN, (d) SVM. 
 
 

6. Conclusion and perspectives 
In this paper, we have shown the influence of some 
textural parameters on the design of optimal 
architectures of the FFNN, QNN, and SVM 
networks, able for the textures identification of the 
remote sensing images with different spatial 
resolutions and acquisition modes.  
The parameters of the networks have been adjusted 
according to the criterion of minimum mean squared 
error. The successful networks are those that 
achieve the maximum texture identification rates 
and this for the faster networks in training time.   
The results of the texture identification show that it 
is possible to assign to a given texture a 
classification method and a window size of texture 
analysis, which is accurate for its identification with 
the classification rates superior to 96%.  A multitude 
of parameters must beings optimized to achieve 
satisfactory classification results. 
In the perspectives of this work, we will 
automatically design the SVM networks; the goal is 
to facilitate the training phase and in the same time, 
reduce the user’s action. We think that it is possible 
to optimize the number of vector supports which 
may be obtained by realizing the parameterization 
of the SVM inputs than the direct utilization of the 
digital pixel values of the textures. This 
parameterization may be realized by using the 
orthogonal transforms applied to textures. Also, to 
reduce the duration of the simulations, we will 
realize the implementation of the developed 

programs using the compiled languages such as the 
C or C++ than Matlab used in this work.  
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